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Introduction to Maximum Entropy

D. S. Siviu

Theoredcal Division & Los Alamos Neatron Scattering Center
Los Alamos National Laboratory

Los Alamos, New Mexico 87545

ABSTRACT: The maximum entropy (MaxEnt) principle has been successtully
uscd in image reconstruction in a weide varicty of ficlds. We review the need for
such methods in data analysis and show, by use of a very simple example, why
MaxEnt is to be preferred over other regularising functions. This leads w a more
general interprewation of the MaxEnt method, and s use is dlustrated wath
scveral different examples. Pracucal difficultics with non hincar problems still
remain, this being highlighted by the notorious phase problem an
crystaliography. We conclude with an example from ncutron scatiering, using
daia from a filter difference spectrometer to contrast Maxknt with a conventional
deconvolution.

1. Introduction

In many scientific expcniments, the quantity of interest [ s related to the data d
through some transformaton O and noise a:

d-0Of+v o

For cxamplc, f might be the radio-flux distnibuion of an astronomacal source, or the
momentum distribution of atoms in ligumd helium, or the scatwering law in a neutron
scattcring experiment, and so on. The transformation operator O might represent
Fourier transform, or a convolution with an instremental esolution function, The
Job of data analysis s to infer the desired quantity T irom the data d.

The simplest way of denving an estimate of f frona the data s o apply the

mverse wansform O°! (o the daw: f- O-'d. In many cases, however, we cannot de
this bocause the inverse operator docs not exist, often because we have missing data
We cannot Founer transfornm a data-set, for example, of we have unmeasured data,
Even il we can compute the inverse transform, our reconstruction will have many
artefacts because we have not taken into account that the datis were noisy:

£ o'd riota
We will iltustrate the effects of notse on the directinverse praphically in Sectuon 6

The Lact that the data e both nosy and incomplets means that oar problen



fundamentally all-posed - there are many reconstrucuons ol f permitied by the dat,
We can consider all the reconstructions that would give data consistent with those
actually measured by sewmng up a misfit statisuc - x© is often approriate:

- 2
2 N‘ I.dL - d"l
S
(S,
where dy, is the k™ measured datum, with error-bar oy, and K| & 1 the corresponding,
datum chat a wial reconsuuction f would produce in the absence of noise:
ak = [0. f]k. Those reconstructions that give x° < N arc deemed to have “fit the

data”™ and constitute the feasible set of f This feasihle sct, howcever, s
incomprchensibly large: suppose that we wish 10 reconstruct a 2-d image on an 8:X
pixel grid with just 16 grey levels; this gives a total number of 1077 possible
reconstrucuons. Even il the data res'nicied the intensity of cach pixel w vary only by
(t) onc level on average, the feasible set would still consist of 10*Y possible
reconstructions. This is enormous if you comparc it with age of the universe, say,
which is only 10!7 sc. onds. Real problems are typically 128x128 pixel grids with
256 grey levels!

As we cannot 2ven comprehend the tewal number of solutions, let alone compute and
display them, we are forced 10 make a selection. We would Like to say this 1s our
("best™) estimate of the wruc f. Which solution should we select?

2. The principle of maximum entropy

If £ is a positive and additive quantity -~ for example, a probability Censity lunction,
or the micnsity distribution of an opucal picture, or the radio-flux distnibution of @n
astronomical source - then the MaxEnt principle states that we shonld choose that
solution which maximises the Shannon-Jaynes cntropy & (Jaynes 1981,
Skilling 1987):

s= ) [, -my - flog(tfm)
)

where [as the flux in the J*P pixel of the digitised reconstruction of f, and (m}asa
starting iodel whnch encomporates any pnor knowledge we have abouat [, o the
absence of any such knowledge, all the m, are set equal. 1t F1s a normalised quanuty
such thac X 1) 1L and (m,] 1s constant, then entropy reduces 1o the more familiy
tormol - Lt lopd).

Hut why should we choose the Maxkint solunon” - We shall iy to answer this
question by asiga speartic, and very simple, example and then pive a more penerai
mterpretation of the Maxk-nt choree



2.1 The kangaroo problem

MaxEnt is not the only regulansing function used in image reconstruchion: seveial
have been recommended. We wall follow Gull & Skilling (1984) 1n using the
langaroo problem to demonsuaie our prelerence for the Maxkin howe over the
aliernauves. It is a physicists’ perversion of a matheraaucal argument given iy
Shore & Johnson (1980), where they fomally show that Maxlint s the only
regulansing funcuon that yiclds self-consistent resulty when the . ame information s
uscd in difterent ways. The kangaroo priblem iy as {ollows:

Information: (1) Onc third of Zanparoos have blue eye.

(2) One thurd of kangaroos are lelt hisdd.

On the basis of this informanon aliae, estiimate the
proporon of kangroos that are both blue eyed and

icft-handed.

Question:

Clearly, we do not nave enough informauon to kaow the correct answer; all
solutions of the type shown in the 2x2 contingency table of Fig. 1 @) [t the daa
these constitute the feasihle ser of solutions, cach of which 1s equally hikely. Fags
1(b)-(d) show three of the myriads of frasible solutions: namely, the one with no
corrciation and the oncs with the maximum posiuve and negative correlanions,
respectively. Although the data do not allow us 1o say which s the correct sol-uon,
our common sense compels us W the uncorrelated soluton i we are forced o make a
choice —no other single choice is defensible.

Table 1 shows the result of selecting the solution by maximismg four commonly
used regulansing functions. For this very simple example, where common sense wells
us the ™ best™ answer when faced with insuthicient (hut norse freed data, i is only the
Shannon-Jaynes entropy that yiclds a sensible answet!

Can we interpret the Maxkint chowee more generally”?

Left-handed

Fig.1 Truth tablos for the

True Falw kang.aroo problom
e (8) Ganwal solution, 0 x-.17
fy=x f- 175 x (b) Uncorralated solution
(c) Maximum positive corralation
=13 x g 1V x (d) Maomum nagative cottelation
th)y } 1M M (c) 171 0 {d) 0 173
M am 1] M A 173



Table 1

Reeulansatnion tunction Proporion blue-cved and left-handed (x) Correlator |
-2 flogt)) n Uncorrebited
p3 lj“ 112 Negative
pX log(f}) 0.13m 1} Positive
X fJ”J 0.12176 Positive

2.2 The monkey argument

Our common sense recommended the uncorreiated solution because, intwtively, we
knew that this was the least committal choice. The data iself did not rule out
correlation but, without actual evidence, it was (a priori) more likely that the genes
controlling handedncs s and eye-colour were on different chromosomes than on the
same one. Athough we cannol usually appeal 10 specific knowledge like genes and
chromosomes, we can usc the monkey argument of Gull & Daricll (1978) 10 sec¢
more generally that the MaxEnt choice is the one that 1s maximatly non-committal
about the infomauon we do not have. The monkey argument can (again) be thought
of as a physicists’ perversion of the formal work of Shunnon (1948) showing that
entropy was a unique measure of informuon content,  The monky argument 18 as
foliows:

Imagine a large team of monkeys who make images (f), at random, by threwing
small balls of flux at a (rectanglular) gnd. Lventually, they wall gencrate all possible
mmages. 1 we have some daa relating 1o an object (), we can reject most of the
monkcy images because they will not give data consistent wath the experimental
mecasurcments. ‘Those uvages that are not rejected constiute the feasible set. 1t we
arc (0 scicct just onc image from this feasible set, the image that the monkeys
generate most ofwen would be a sensible choice. This is because our hypothetical
tcam of monkeys have no panticular bias, and so this choice represents that imayge
which 15 consistent with the measured data but, at the same time, 18 least cometal
about the data we do notlun e, s preferred image 1s th: Maxkat soluton,

3. Model-titting and least squAres

The quantity of nterest £ s usually o continuous quantity, For compaanonal
purposes, however, we dipitise 1t inmo a discrete set of pixels (I,',_ Ths 18 not
hotation because we can digatese as Binely as we ke, but it does result e us having
to estimane a Large number of parameters (Haxom cach poel) rom a relatvely siall
number of ata The problem iends 10 be grossly under detemuned and, hence, we
ww Mand v o heln us



Someumes we are more fortunate in that we have a tunctional model for £ the
sum of six 8-functions, or two Gaussians, for cxample. In this case £ can be
parameierised by a handful of vanables. We now have 10 esumate a small number of
parameters from a relatively large number of data  the problem is over-determined.
In these cases, and with suitaple assumpuons, the method of least squares s usually

appropridic.

If we have a sound basis for our maodel, then model futing with least squares will
give more accurate results than Maxknt -- we are using much more prior knowledge
in the model-fituing procedure than we are in MaxEnt. 1 we do not have a functional
model, or if our model is ad hoc ("wry fitung Gaussians™), then we are belter off using
MaxEnt. It is possible, and perhaps (0 be recommen.ed, th..t we combine the use ol
MaxEnt und model-fitting: use MaxEnt 1o obtain an iniual reconstruction o get an
overall picture; if the MaxEnt reconstruction and our prior paysical knowledge
suggest a funcuonal model, then use this in a least squares sense for {futher
quantitative analysis.

4. General examples

We refer the reader 1o a comprehensive review by Gull & Skilling (1984) for
numcrous examples of the applicuons of MaxEnt. With their kind permission, a
small selecuon of these are reproduced wn Fig. 2. They allustrate the wide range of
problems 1o which MaxEnt is now applicd - forensic imaging, radio astronomy,
plasma diagnostics, medical tomograpy, and blind deconvolution.

5. Difficult problems

The prinaiple of Max..ntis gquiie genceal aidd can be appied 1o any problem where the
object ¢l interest 1s a positive and additive quantity. Actually finding theManI'nt
solunon can be very dillicult for non-linear problems, however, because there aie
many local minima of 2 in a large paramcter-space (typically 10% pixels). A
parucularly well-known example is the notorius Founer phase problerm
crystallography, the gravity of the situaton beang graphically illustrazed i Fag. 3
We will not pursue this wopic any further here except to stale that, m genceral, the use
of additional prior knowledge is essential for these problems (see, for example,
Siwvia 1937).

6. The Filter Ditference Spectrometer

We now give an exphicit example from ncutron scattening. the deconvolution of
data from a NOlter differeace spectrometer (1DS). For the expenmental and
spectrometer detinls, the reader s relerred to Vorderwasch, ecal L (1986)  “The
essentil pomt for our purposes s that the FDS has a resolution funcuon wath i
fanly sharp edpe and a long decaymng tul. The Cambardge alporthm was used
throughout o maxinse the entropy (Shilhing & Bryan, 1981)

We start waith simple simulations to laghilipht the differences between Mact ntand
conventional dicect mverse under "controlled” condibons They do not oone the
FDS exactly bot capture ats satient teatwies Tor these sannlatons, the toae



Gult and Skithng: Maximum enwropy method

before after
Maximum entropy deconvolution
(UK Home Office -
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Fig. 2 Genaral example of Maximum entropy image roconstructhion. Reoproduced by
courtesy of Drs Gult and Skilling



o (n)

Fig. 3 A graphic ustration of the phase problem  (3) and (b) are the orginal
inages  (c) is the (F ounor) recanstruchon which has the | ouner phases of (a) and
{ ounor amplitudos of (b), (d) 15 the roconsttuction with the phasos of (b) and the
ampltudes of (a)



spectrum f(x) (scatlering law) is shown in Fig. 4(a): it consists of two spikes
scparated by a low platcau on the left and a much broader peak on the right. This
"truth” was gencerated on a grid of 128 pixels and convolved with a sharp-edged
exporicanial ¢ X%, where t=15 pixels, shown in Fig. 4(b), lo create a noiscless data-
sct of 128 points. A constant ("known") background equal 10 5% of the peak datum
was used and Gaussian random noise with a standand deviation equal wo the square-root
of each datum was added. Fig. 4(c) shows this simulated dawa set when the peak
datum was 108 (counts) — essentially noiscless. For this casc, both MaxEnt and the
direct inverse (O-l.d) gave reconstructions indistinguishable from the the wuth
(Fig. 4a). Figurcs 5 and 6 show the corresponding results when the data were made
more noisy (fewcr counts). The quality of the reconstructions deteriorates for both
methods. Since the direct inverse does not take int: account that the data ars noisy
(Secuon 1), it produces numerous artefacts and deteriorates much more rapidly than
MaxEnt
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Fig. 4 (a) Spectrum, or idaalised scattering law, used In the FDS simulitions
(b) A first approximation to the FDE resolution tunction. a sharp edged exponential
(c) A simulaied data sat with vary good statistics (d) A bettar approximation to the
FDS resolution function sharp edyed exponential convolved with a nattow G an
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Rathcr than usc the sharp-edged cxponential above (Fig. 4b), we obiain a better
approximation 1o the FDS resolution function if we convolve il with a nammow
Gaussian (standard deviation of one pixel), as shown in Fig. 4(d). The resulting
simulaticd data, with good statstics, is shown in Fig. 7(a). Although we can
deconvolve this new resolution function with the direct method in principle, we will
only dcconvolve the exponential component as is donc in practice (Mezei &
Vordcrwisch 1987). This is panly because the inverse is easy to calculate if there s
a sharp edge (by direclt substilution), but more so becasue the inverse becomes badly
conditioned (very seasitive Lo noise in Lthe data} when the Gaussian component is
included. With MaxEnt, however, we can safcly deconvolve the "smoothed”
resolution function. The inverse and MaxEnt recontructions are shown in Figs. 7(b)
& (c), respectively. The MaxEnt reconstruction shows much improved resolution
and some noise suppression over the direct inversc.

Finally, we show the result of using MaxEnt on a a real FDS data-sct. The data and
resolution function were provided by Vorderwisch, experimental and analysis details
being given in forthcoming papers (Vorderwisch 1989, and Sivia ef al. 198Y).
Fig. 8(a) shows the Be data for hexamethylenc-ictramine (HMT) at 15 K taken at the
Los Alamos Ncutron Scattering Center (LANSCE). Fig. 8(b) shows the
conventional Filter Difference spectrum: a cru e hardware deconvolution obtained by
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Fig. 7 (a) Simulated FDS data, with g
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resolution function 1Fig. 4d). (b) Direct X
inverse deconvolution of the ‘e
exponential component, or “Mezei o
method" reconstruction. (¢) MaxEnt 4
reconstruction, showing that the \ )\ /\
Gaussian componen! can be safely ol e |

deconvolved 1o give i/mproved image \
resolution



subiracling th: daia oblaincd with Be and BeO filters. Fig. 8(c) shows the MaxEni
reconstruction, and Fig. 8(d) shows this overlaid on the direct inverse reconstruction
mentioned above. As expected, we find that MaxEnt has improved the resolution and
rcduced the noise. The improvement is obvious, but not dramaltic, in this particular
example, because we had good stastics and also because the intrinsic Gaussian-like
contribution 1o the resolution fu . Uon is very narrow and so has liule efTect.

7. Concluding remarks

We have shown that MaxEnt provides an optimai ci.:< Son for sclectirg a positive
image when faced with incomplcie and noisy data. The Maxbni chwice can be
interpreted as the maximally non-committal solution that is consistent with tac daw.
As such, it tends 1o be less noisy and has fewer artefacts than conveational methods,
thus ruaking it easier to interpret the results.
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Fig. 8 (a) FDS data for Hexamethylane Tetraming, at 15K, taken with tho Ba filtar
at LANCE. The channels are in increasing time-of fhght. or decreasing energy
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obtinad by subtracting data obtainod wit) Be and BeO filtars. (c) Thoe Maxi nt
racanstiuction. (d) The diroct invorse, or “"Maezer method® | teconstiuction (dots.)
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We mention in passing tha a unified approach 1o all cawa analysis (MaxEnt, model-
fuitung, or whatever) can be achicved by casung all such problems in the probalistic
framework of a Bayesian analysis. This not ony gives us the way o sclect the
opumal answcr to any given problem, but it also tells us how to estimate the
rcliabiltiy of that solution; unfortunately, however, the error analysis 1s usually
impossible to implement in practice except for the smallest of problems. The
ditficulty does not anise because we arc using MaxEnt, but because w2 are trying
esunmate a large number of parameters,
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